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A NEW METHOD OF SOLVING THE OPTIMAL CONTROL PROBLEM FOR 
A PARTIALLY OBSERVABLE STOCHASTIC VOLTERRA PROCESS* 

L.E. SHAIKHET 

A new method is proposed for solving the linear-quadratic problem of 

optimal control for a partially observable stochastic Volterra process. 

The method relies on the representation and optimal estimation of 

optimal control in the form of integrals over the observable process. 

The integrands are non-stochastic and are defined by some system of 

integral equations, which may be solved numerically in advance. The 
optimal control is constructed directly from observations. An example 
demonstrating the implementation of the method by computer is given. 

Integral Volterra equations first arose in creep theory and they are 

the foundation of this theory /l, 2/. They include a fairly large class 
of equations with a memory /3-5/, which play a central role in control 

theory and in various applications. The theory of optimal control of 
Volterra equations is a natural outgrowth of the theory of controllable 

differentiable equations. Filtering and optimal control theory for 

stochastic integral equations is rapidly developing. The classical 
solution of the problem by the "separation principle" /6, 7/ reduces to 

solving the optimal filtering problem and the optimal control problem 

under complete information for some subsidiary controllable system. The 
optimal control of the original problem is obtained /8/ as a linear 

functional of the (mean-square) optimal estimate of the optimal trajectory 

of motion, which in its turn is the solution of a system of stochastic 

integral equations. Thus, in order to construct the optimal control at 

each instant of time t we need to solve a system of stochastic integral 

equations in the interval 10, tl. 

1. Let (Q, (7, P) be the probability space, (f,, t E [O, Tl) a stream of o--algebras, fr Co, 
(s(t), p(t)) a partially observable stochastic parocess defined by the equations 

t 1 

z (t) = zo + l (ao (4 s) u (s) + 01 (t, 8) = (4) ds + l b (t. 4 dwl (8) (1.Q 
0 0 

dy (t) = A (1) I (t - h) dt + B (t) dw, (t), .z (s) = 0, s < 0 (1.2) 

h > 0, z (1) E I?“, y (1) E R”‘, u (f) E R’, MI, = 0, Ml,+,' = D,, 

Here F(1) is the observable process, .z (1) is the unobservable process, u (0 is the 

control, ml (t) and m, 0) are f-measurable mutually indpendent k, and k, dimensional Wiener 

processes respectively, and -20 is a normal random variable independent of m1 0) and m, (0. 
The coefficients in these equations are appropriately dimensioned, non-stochastic, and piece- 

wise-continuous. The control objective is to minimize the functional 

J (u) = M I’ (T) Fz (T) + i u’ (f) N (1) u (1) dt] (1.3) 
0 

Here N (0 is a piecewise-continuous matrix which is positive definite uniformly in t 

and F is a non-negative definitematrix (both non-stochastic); the prime denotes the transpose. 

Let f,v be the minimum , a-algebra generated by the process y (E), o < t, Mf" = hi {*lft”}. 
An admissible control is an arbitrary f+measurable process u(t) for which the system 

of Eqs.(l.l), (1.2) is solvable and J(u)<=. 

Lemma 1. The optimal control of problem (l.l)-(1.3) is representable in the form 

s,,(r) = 5 C'oK 8) duo@) (1.4) 

0 - 
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where Q,, (7, r) is a non-stochastic matrix, Yo (8) is the solution of system (1.1) and (1.2) 

for u q uO. 

Proof. Let R1(t,~) be the resolvent of the kernel aI(t,'r). Then 

Let 

T 

As in /9, lO/ we can show that the optimal control of problem (l.l)-(1.3) has the form 

uo (7) = -A’-’ (7) vi (TV ‘I, (10 (. , 7)) FM,%, (T) 

We rewrite Eq.(l.l) in the form 

1 

w(t) = 20 + 5 00 (t, S) so (s) ds + i 5 (t, s) dw, (8) 
0 0 

We know /ll/ that the mean-square optimal estimate m(r)== kl~%(T), rgT of 
defined by Eq.(1.8) is obtained from the observations l/o (s). 8 d 7 in the form 

*(T) = j Go@, 8)duo(s) 
0 

From (1.7) and (1.9) we obtain the equality (1.4) for 

Qo (7. 8) = --N-l (7) $1 (T, r, a, (., r)) FG, (r. 8) 

From the proof of Lemma 1 it follows that the matrices Q0 (T, S) and '% (.c. s) 

(1.5) 

(1.6) 

(1.7) 

(1.6) 

(1.6) 

(1.10) 

defining 
the optimal control (1.4) and the optimal estimate (1.9) are related by (1.10) (together with 
the subsidiary equalities (1.5) and (1.6)). 

We will derive another relationship between the matrices Qo (% 8) and G,(t, s). This 
will require the following notation. Let 

(1.11) 

and R, (G z) is the resolvent of the kernel 

t<r 
+ qo 0. 7 + h) A (7 + h) 

P, (t, T), i.e. , 

(1.12) 

t 
R. @. 1) = PO (t. 7) + l Ha (t, s) PO (s, 7) ds 

% 
(1.13) 

For an arbitrary matrix f(r), T=[J, 11, let 

%(t* s,f(.))=f(t)+j.Ro(‘.r)f(.)dr 
I 

Let 

R(t, 7) = Qa(& 6, E) Da$u'(r, 6, E) + 
tAr 

s Ja(t, 8, b(., 8))%'(? s, b(*, s))ds+ 

tAr 

; %((ft 8, qo(., ~))&(8)90'(~. 8, clo(., s))dS 
0 

S/, (7) = R (T, T - h) A' (7) -t $0 (f, T, qo (*, T)) B, (T), Bo = BB' 

Kh (8, T) = A (a) R (8 - h, r - h) A' (T) + 

B,(O)(DO'(?-~,~.P~(.,~))A'(~)+A(~)~P~(J-~,~.~~(.,?))BO(T) 

(1.14) 

(1.15) 

(1.16) 

Lemma 2. The matrices Qo (7, 4 and G,(T,~) are COMeCted by the equation 
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t 
Go (t, z) C (T) = 8, CT) - j Go (6 4 K, (8. 7) ds, T E LO, “I (1.17) 

0 

Proof. Let m(f) be a f#Y 

G (t. a)- 
-measurable process oftheform (1.9) with an arbitrary kernel 

Using (1.9), (1.2) and the easily verified relationship M&,(T) --m,(t))m'(t)=O, we 
obtain 

it Go (1, s) [A (s) M (IO (s - h) a,’ (T - h)) A’ (7) dr ds + 

0% 
B (sf M (dw; (s) 20 (7 - h)) A’ (T) d-r + A (8) M (zo (s-h) dws’ fr)) B’ (T) ds] x 

G’ (b ~14 ( Go (t, 7) 4 (‘1 G’ (4 7) dt 
i 

Substituting (1.4) into (1.1) and using (1.2), we have 

Since R,ft, T) is the resolvent of the kernel pll (6 Q. we have 

Thus,, 

M be (9 ~8’ CT)) = R (f, 7) 

M (z,, (0 d+’ (T)) = tpo ft, 5, QO (*. 7)) B (7) dT 

Substituting (1.19) into (1.18) and noting that the kernel G 0, T) is arbitrary, we 
obtain (1.17). 

Fig.1 

a a‘? t 0.v 

Fig.2 

The relationships (1.10) and (1.17) may be regarded as a system of two equations in two 
unknowns. If the matrix B,(T) is invertible uniformly in T, then (1.17) for each fixed t 
is a Fredholm equation of the second kind, which has a unique solution /11, 12,'. Numerical 
methods of solving such equations are considered in /13/. 

The system of Eqs.(l.lO) and (1.17) is easily generalized to the case when Eq.Cl.1) 

contains an unknown parameter and the noises in Eqs.(l.l) and (1.2) are dependent /14, 15/. 
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2. The algorithm for the numerical solution of the system of equations (1.10) and (1.17) 
is based on the method of successive approximations. Consider an arbitrary initial value of 
the matrix G,(t,s). Given ~,(t,s), we apply the relationships (1.5), (1.6) and (1.10) to 
find the initial value of the matrix Qo(t.6). Given Oo(t, s) we apply the relationships (l.ll)- 
(1.16) to construct Eq.(1.17), whose solution supplies the next approximation of the matrix 
G, (t, s). We then recalculate VO(~,S) and so on, until two successive approximations agree 
(within specified accuracy limits). The algorithm was tested on some numerical examples. 

Example. Consider the control problem 

2" (t) = u + (Jw,' (t), 2 (0) = 20. 2' (0) = 0 (2.1) 

y'(t) = 5 (L - h) + w,' (t), .z (s) = 0, J < 0, # (0) = 0 (2.2) 

J(~)=M[r'(T)+FS=a(s)dr] (2.3) 

0 

Eq.(2.1) after double integration takes the form (1.1). The system of Eqs.(l.lO) and 
(1.17) corresponding to problem (2.1)-(2.3) was solved numerically by the above algorithms 
for T=0.4, o=lO, Mso2= 1. The normal random variable z0 and the Wiener processes II', (0, and 
ma (1) were simulated by a normal pseudorandom number generator. The trajectories of the 
processes r,(t), Y o(t). uo(t)r m,(t) were constructed numerically using formulas (2.1), (2.2), 
(1.4) and (1.9). The numerical results for various samples of 30. Wl (0, 1", (f) and various 
values of h are plotted in Fig.1 (x0 = -0.0865, h = 0) and Fig.2 (zO = 1.856, h = 0.2). 
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